
令和 7 年度（2025 年度）入学試験（令和 6 年（2024 年）8 月実施） 

問題１：必答問題 

 
問１【微分方程式】 
 
（a） 
𝑦𝑦 = 𝑒𝑒𝜆𝜆𝜆𝜆 の形の解を考えて、これを式に代入すると、特性方程式は (𝜆𝜆 − 1)2 = 0。 
𝜆𝜆 = 𝜆𝜆1,𝜆𝜆2が異なる場合は、一般解は𝐶𝐶1と𝐶𝐶2を任意定数として、𝑦𝑦 = 𝐶𝐶1𝑒𝑒𝜆𝜆1𝑥𝑥+𝐶𝐶2𝑒𝑒𝜆𝜆2𝑥𝑥 です。 
 
しかし、今回、𝜆𝜆 = 1 は重根です。この場合、一般解は、𝑦𝑦 = 𝐶𝐶1𝑒𝑒𝜆𝜆1𝑥𝑥+𝐶𝐶2𝑥𝑥𝑥𝑥𝜆𝜆1𝑥𝑥 となります。 
（ひとつの基本解 𝑒𝑒𝜆𝜆1𝑥𝑥 が分かっている時、 𝑐𝑐(𝑥𝑥)𝑒𝑒𝜆𝜆1𝑥𝑥 を作りこれを元の式に入れてみると、
𝑐𝑐(𝑥𝑥) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 となります。したがって、もうひとつの基本解は 𝑥𝑥𝑥𝑥𝜆𝜆1𝑥𝑥 であると分かります。） 
 
したがって、解は、𝑦𝑦 = 𝐶𝐶1𝑒𝑒𝑥𝑥+𝐶𝐶2𝑥𝑥𝑥𝑥𝑥𝑥。 
 
 
（b） 
これは変数分離ができる形の微分方程式です。 

𝑑𝑑𝑑𝑑
𝑦𝑦

= −𝑥𝑥 𝑑𝑑𝑑𝑑 

両辺を積分して、 

log𝑦𝑦 = −
𝑥𝑥2

2
+ 𝐶𝐶1 

両辺を（𝑒𝑒を底とする）指数関数の肩に乗せて 

𝑦𝑦 = 𝐶𝐶𝑒𝑒−
𝑥𝑥2
2  

（𝐶𝐶 = 𝑒𝑒𝐶𝐶1） 
 
 
  



問２【積分】 
 
部分積分を 2回使うと積分記号が外せます。 

� 𝑥𝑥2
∞

0
𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 

= [−𝑥𝑥2𝑒𝑒−𝑥𝑥]0∞ − � −2𝑥𝑥
∞

0
𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 

= 2� 𝑥𝑥
∞

0
𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 

= 2 �[−𝑥𝑥𝑒𝑒−𝑥𝑥]0∞ − � −
∞

0
𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑� 

= 2 �� 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑
∞

0
� 

= 2[−𝑒𝑒−𝑥𝑥]0∞ 

= 2 

 
 
  



問３【ベクトル】 
 
ベクトル演算をする場合には、デカルト座標系（直交直線座標系、直角座標系、𝑥𝑥 − 𝑦𝑦 − 𝑧𝑧 座
標系）での成分表記を用いるのが簡便です。 
 
ここでは、3次元空間における原点からの距離 𝑟𝑟 を 

𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 

と表記することにします。また、𝒓𝒓 = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� は、3 次元空間における位置ベクトルです。 

 
まず、 

𝛁𝛁𝑟𝑟2 =

⎝

⎜⎜
⎜
⎛

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕
𝜕𝜕𝜕𝜕⎠

⎟⎟
⎟
⎞

(𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) = �
2𝑥𝑥
2𝑦𝑦
2𝑧𝑧
� = 2 𝒓𝒓  

次に、 

𝒊𝒊 × 𝛁𝛁𝑟𝑟2 = 𝒊𝒊 × 2 𝒓𝒓 = 2�
1
0
0
�× �

𝑥𝑥
𝑦𝑦
𝑧𝑧
� = 2�

0
−𝑧𝑧
𝑦𝑦
� 

最後に、 

𝛁𝛁 × �2�
0
−𝑧𝑧
𝑦𝑦
�� = 2
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⎜⎜
⎜
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⎟
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0
−𝑧𝑧
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� = 2�

1 + 1
0
0

� = �
4
0
0
� = 4𝒊𝒊 

 
 
  



問４【行列】𝑨𝑨 = �2 1
1 2� 

 
（a） 

単位行列を𝑬𝑬 = �1 0
0 1� と書くことにすると、行列 𝑨𝑨 の固有値 𝜆𝜆 は、以下の式から計算し

ます。 
| 𝑨𝑨 −  𝜆𝜆 𝑬𝑬 | = 0 

これを 𝜆𝜆 について解くと、𝜆𝜆 = 1, 3。 

固有ベクトルは、それぞれの 𝜆𝜆 について 𝑨𝑨�
𝑥𝑥
𝑦𝑦� =  𝜆𝜆 �

𝑥𝑥
𝑦𝑦� を解く。(a)の範囲では規格化はし

なくてよいです。 

固有値𝜆𝜆 = 1の固有ベクトルは� 1
−1�の定数倍、固有値𝜆𝜆 = 3の固有ベクトルは�1

1�の定数倍。 

 
 
（b） 
答え： 
変換先の図形は、原点を中心とし、長軸が𝑦𝑦 = 𝑥𝑥に沿い、短軸が𝑦𝑦 = −𝑥𝑥に沿う楕円で、長
半径が 3、短半径が 1。 
 
 
解説： 
まずは、逆行列の公式を覚えている前提で、シンプルに考えてみます。行列 𝑨𝑨 による一
次変換は、 

�𝑥𝑥
′

𝑦𝑦′� = 𝑨𝑨�
𝑥𝑥
𝑦𝑦� 

と書け、両辺に左から 𝑨𝑨 の逆行列 𝑨𝑨−𝟏𝟏 をかけると 

�
𝑥𝑥
𝑦𝑦� = 𝑨𝑨−𝟏𝟏 �𝑥𝑥

′

𝑦𝑦′� 

𝑨𝑨 = �2 1
1 2� の逆行列は（公式を用いて）𝑨𝑨−𝟏𝟏 = 1

3
� 2 −1
−1 2 � ですので、 

�
𝑥𝑥
𝑦𝑦� =

1
3 �

2 −1
−1 2 ��𝑥𝑥

′

𝑦𝑦′� =
1
3
� 2𝑥𝑥′ − 𝑦𝑦′
−𝑥𝑥′ + 2𝑦𝑦′� 

(𝑥𝑥,𝑦𝑦) は 𝑥𝑥2 + 𝑦𝑦2 = 1 を満たすので、(𝑥𝑥′,𝑦𝑦′) は計算して整理すると 
5𝑥𝑥′2 − 8𝑥𝑥′𝑦𝑦′ + 5𝑦𝑦′2 = 9 



を満たすことになります。 
これは楕円です。 
（楕円の一般式は、𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐶𝐶𝑦𝑦2 + 𝐷𝐷𝐷𝐷 + 𝐸𝐸𝐸𝐸 + 𝐹𝐹 = 0、𝐵𝐵2 − 4𝐴𝐴𝐴𝐴 < 0 です。） 
 
 
 
しかし、上記だけではすぐには図は描けなさそうですので、次に(a)をヒントととらえ、行

列 𝑨𝑨 を（a）で求めた固有値と固有ベクトルを用いて対角化し、 𝑨𝑨 = 𝑷𝑷�1 0
0 3�𝑷𝑷

−𝟏𝟏 の形

に書き直して考えてみましょう。 
 
まず、固有ベクトルを規格化しておきます。 

固有値𝜆𝜆 = 1の固有ベクトルは 1
√2
� 1
−1�、固有値𝜆𝜆 = 3の固有ベクトルは 1

√2
�1

1�。 

 
次に、𝑷𝑷 は、固有ベクトルの要素を使って 

𝑷𝑷 =
1
√2

� 1 1
−1 1� 

さらに、𝑷𝑷𝑷𝑷−𝟏𝟏 = 𝑬𝑬 を満たすように 𝑷𝑷−𝟏𝟏 を求めると、 

𝑷𝑷−𝟏𝟏 =
1
√2

�1 −1
1 1 � 

これは、45°の回転行列です。 

𝑷𝑷−𝟏𝟏 = �cos 45° − sin 45°
sin 45° cos 45° � 

さらに（したがって）、𝑷𝑷 は（すぐに）次のように書けます。 

𝑷𝑷 = �cos(−45°) − sin(−45°)
sin(−45°) cos(−45°) � 

 
つまり、行列 𝑨𝑨 による一次変換は、 

�𝑥𝑥
′

𝑦𝑦′� = 𝑨𝑨�
𝑥𝑥
𝑦𝑦� 

= 𝑷𝑷�1 0
0 3�𝑷𝑷

−𝟏𝟏 �
𝑥𝑥
𝑦𝑦� 

= �cos(−45°) − sin(−45°)
sin(−45°) cos(−45°) � �

1 0
0 3� �

cos 45° − sin 45°
sin 45° cos 45° ��

𝑥𝑥
𝑦𝑦� 



と書き表すことができます。これは、点�
𝑥𝑥
𝑦𝑦�を、（右から順に）まず原点に対して反時計回

りに 45°回転した点に移し、次に𝑥𝑥成分を 1倍、𝑦𝑦成分を 3 倍した点に移し、最後に原点
に対して時計回りに 45°回転する、という変換をおこなっていることになります。 
 

今回点�
𝑥𝑥
𝑦𝑦�は半径 1 の円上の点ですので、はじめの「反時計回りに 45°回転」では見た目

上何もおこらず同じ円のままで、次の「𝑥𝑥成分を 1倍、𝑦𝑦成分を 3倍した点に移す」ところ
で、長軸が𝑦𝑦軸に沿い長半径 3、短軸が𝑥𝑥軸に沿い短半径 1 の楕円に変換され、最後の「時
計回りに 45°回転」により、長軸が𝑦𝑦 = 𝑥𝑥に沿い、短軸が𝑦𝑦 = −𝑥𝑥に沿う楕円となる、とい
うことが分かります。 
 

あるいは、円 𝑥𝑥2 + 𝑦𝑦2 = 1 上の点のうち例えば � 1
√2

, 1
√2

 � や �− 1
√2

, 1
√2

 � がそれぞれどこに

動くか、（実際に図を描いて）、考えてみるのもよいでしょう。 

�
1
√2

,
1
√2

 � → (0, 1) → (0, 3) → �
3
√2

,
3
√2

 � 

�−
1
√2

,
1
√2

 � → (−1, 0) → (−1, 0) → �−
1
√2

,
1
√2

 � 

前者は元の点の 3倍先へ移りますが、後者は元の点に戻ります。さらに必要あれば、もう
数点についても考えてみましょう。 
 
 
 
  



応用問題１： 

𝑎𝑎 と 𝑏𝑏 (𝑎𝑎 ≠ 𝑏𝑏) を実数として、2 × 2の行列 �𝑎𝑎 𝑏𝑏
𝑏𝑏 𝑎𝑎� による一次変換は、同様に、回転と

伸縮の合成となります。この場合の固有値と固有ベクトルを求めてみましょう。 
 
 
応用問題２： 

2 × 2の対称行列 �𝑎𝑎 𝑏𝑏
𝑏𝑏 𝑐𝑐� の場合はどうなるでしょう？ 

（ヒント：2 × 2の直交行列には、回転行列�cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 �と、原点を通る直線（傾き𝜃𝜃

2
）

に対する折り返し（反転、鏡映）行列�cos𝜃𝜃 sin𝜃𝜃
sin 𝜃𝜃 − cos𝜃𝜃�とがあります。たとえば：

https://en.wikipedia.org/wiki/Orthogonal_matrix） 
 


