****************************************************************************************************************

第305回 大気海洋物理学・気候力学セミナー のおしらせ

日 時: 1月18日(木) 9:30 - 12:00
Date : Thu., 18 Jan. 9:30 - 12:00
場 所: 低温科学研究所 3階 講堂
Place : ILTS, Auditorium

Speaker:Nguyen Thi Hanh (Course in Atmosphere-Ocean and Climate Dynamics/D3)
Title:Stratospheric age of air in NIES-TM and AGCM
発表者:豊田 威信 (北大低温研/助教)
Speaker:Takenobu Toyota (Institute of Low Temperature Science/Assistant Professor)
題目:季節海氷域の海氷レオロジーに関する一考察
Title:An examination of the sea ice rheology for seasonal ice zones based on ice drift and thickness observations

*************************************************************************************************************

Stratospheric age of air in NIES-TM and AGCM (Nguyen Thi Hanh) 発表要旨:

The stratospheric response to climate forcing is often unpredictable due to interaction between radiation, dynamics and chemistry. Stratospheric change such as the decadal increase of water vapor in turn drives global scale surface warming (Solomon et al. 2010). The difficulty in studying the stratospheric change is understood by the fact that long-term trend of the strength of Brewer-Dobson circulation (BDC) remains inconsistent between diagnoses in climate models and estimates from tracer observations (Engelet al. 2017). In the present study, we focus on the strength of the BDC commonly quantified by the age of air, the stratospheric transit time since the entry of air from the troposphere. Due to multiple circulation pathways, any air parcel is composed of air elements that have different age, which is expressed by the age spectrum (Kida 1983; Hall and Plumb 1994; Waugh and Hall 2002). The age spectra are estimated by applying the Boundary Impulse Response method (Haine et al. 2008; Li et al. 2012) to the transport fields of National Institute for Environmental Studies Transport Model (NIES TM) driven by JRA-25 and Center for Climate System Research/National Institute for Environmental Studies/Frontier Research Center for Global Change AGCM (AGCM) nudged to ERA-Interim. The age spectra and mean age of stratospheric air are discussed by comparing the results simulated by both models. The comparison of mean age is also attempted to observational estimates from satellite SF6 data (Haenel et al.2015) and cryogenic air samplings in March 2015 at Biak, Indonesia (Sugawara et al. 2017).

季節海氷域の海氷レオロジーに関する一考察 (豊田 威信、Takenobu Toyota) 発表要旨:

現在北極海では季節海氷域の割合が増加して海氷の形態が大きく 変わりつつある。しかしながら、IPCC報告書に用いられている 気候モデルはいずれも平均氷厚の急激な減少を予測できていない という問題を抱えている。海氷域が大気や海洋に及ぼす影響を 明らかにするためには気候モデルにおいて海氷分布が正しく再現 されるのが望ましいのであるが、海氷の諸過程の中でも力学過程、 特に変形による氷厚発達過程は再現性が良くなく重要な課題と されている。そこで本研究では海氷レオロジーに着目し、季節海氷域 の例としてオホーツク海の海氷域を対象として現用の海氷モデルで 広く用いられるHibler (1979)のレオロジーの検証を行った。 このレオロジーは領域や水平分解能によらず現在多くの数値海氷 モデルで用いられているが元は北極多年氷域を対象に開発された ものであり、異なる形態の海氷が存在する季節海氷域で適用可能 なのかどうかは今なお検証が必要である。また、このレオロジーで 設定されている降伏曲線の意味はあまり深く吟味されてこなかった。 そこで、ここではRothrock (1975)の考え方に倣って海氷の変形場 による仕事率という観点から、このレオロジーの意味する事を考察 しながら検証を行った。用いたデータはAMSRから求めた海氷漂流速度 と密接度、紋別流氷レーダーから求めた海流漂流速度、それに PALSARから求めた氷厚分布である。解析の結果、概ね肯定的な結果が 得られたがオホーツク海では変形の度合いが北極海よりも大きく、 海氷変形過程のパラメタリゼーションという観点からは、特にグリッド 間隔に関して注意深い取り扱いが必要であることが示された。 The validity of the sea ice rheological model formulated by Hibler (1979), which is widely used in present numerical sea ice models, is examined for the Sea of Okhotsk as an example of the seasonal ice zone (SIZ), based on satellite- derived sea ice velocity, concentration and thickness. Our focus was the formulation of the yield curve, the shape of which can be estimated from ice drift pattern based on the energy equation of deformation, while the strength of the ice cover that determines its magnitude was evaluated using ice concentration and thickness data. Ice drift was obtained with a grid spacing of 37.5 km from the AMSR-E 89 GHz brightness temperature using a maximum cross-correlation method. The ice thickness was obtained with a spatial resolution of 100 m from a regression of the PALSAR backscatter coefficients with ice thickness. To assess scale dependence, the ice drift data derived from a coastal radar covering a 70-km range in the southernmost Sea of Okhotsk were similarly analyzed. The results obtained were mostly consistent with Hibler’s formulation that was based on the Arctic Ocean on both scales with no dependence on a time scale, and justify the treatment of sea ice as a plastic material, with an elliptical shaped yield curve to some extent. However, it also highlights the difficulty in parameterizing sub- grid scale ridging in the model because grid scale ice velocities reduce the deformation magnitude by half due to the large variation of the deformation field in the SIZ.

-----
連絡先

平野 大輔(Daisuke Hirano)
mail-to: hirano@lowtem.hokudai.ac.jp