****************************************************************************************************************
$BBh(B 120 $B2s(B $BBg5$3$MN7wJ*M}7O%;%_%J!<(B $B$N$*$7$i$;(B
$BF|!!;~!'(B 5$B7n(B 1$BF|(B($BLZ(B) $B8aA0(B 9:30
$B>l!!=j!'(B$BCO5e4D6-2J3X8&5f2J(B 2$B3,9VF2(B
$BH/I=
$BH/I=
****************************************************************************************************************
$B9uD,?FD,9gN.0h$N%b%G%j%s%0(B ($B;0;{;KIW(B) $BH/I=MW;](B :
$B9uD,$H?FD,$,9gN.$9$kKL@>B@J?MN$G$O!"3$N.$NR2p$9$k!#%b%G%k$O9uD,B3N.$N0LCV$d B@J?MN$N3$N.7O$rNI$/I=8=$9$k$3$H$,$G$-$k!#FC$K!"Dc120L(B $B$N%*%[!<%D%/3$?e$,!"?FD,%U%m%s%H!"9uD,B3N.$r1[$(!"0!G.BS=[4D$^$GC#$9$k$3(B $B$H$,<($5$l!"$=$NNL$b4QB,CM$HF1DxEY$G$"$C$?!#$5$i$KI=AX?e!&CfAX?e$N12$K$h(B $B$kM"Aw2aDx!"%*%[!<%D%/3$?e$N9gN.0h$X$N%$%s%Q%/%HEy$b5DO@$9$k!#(B
$B#1#0G/0J>e%9%1!<%k$NKL6K3$MNBg5$Aj8_:nMQ(B ($BCSED85H~$HCg4V$?$A(B) $BH/I=MW;](B :
$BKL6K0h$NBg5$JQF0$rBeI=$9$kH?;~7W2s$j$N6K12$K$O!"#1#0G/<~4|JQF0!JKL6K?6(B $BF0!K$,B8:_$7$F$$$k!#KL6K3$MN3$I9Bg5$%G!<%?$r2r@O$7$?$H$3$m!"3$I9J,I[$H(B $B1@$K$O#1#0G/<~4|JQF0$K2C$($F!"3$I98:>/$H1@A}2C$H$$$&%H%l%s%I$b$"$k$3$H(B $B$,$o$+$C$F$-$?!#1@A}2C$NG.%U%i%C%/%9$KM?$($k8z2L$O!"3$I98:>/$K$h$k%"%k(B $B%Y%IDc2<$HF1DxEY$G$"$j!"29CH2=/$@$1$G$O$J$/1@$J$IB>$N;X(B $BI8$b??7u$KD4$Y$k$3$H$r<(:6$7$?$$!#3$I93$MN%b%G%k$r9=C[$7!"$=$l$KJQF0$9(B $B$k6K12$r2C$($F6nF0$9$k$H!"6K12$,6/$$;~$K%7%Y%j%"B&$G3$I9$,8:>/$7!"%+%J(B $B%@B&$G3$I9$,A}Bg$9$k$H$$$&%7!<%=!<$r:F8=$G$-$?!#$$$C$]$&Hs>o$K8BDj$5$l(B $B$F$$$k3$MNFbIt%G!<%?$r%m%7%"$+$iF~ l$r:F9=C[$9$k:]$K(B $B=EMW$J>pJs$rDs6!$7$F$$$k!#(B Arctic Ocean-Atmosphere Interactions at the Decadal and Longer Time Scales M. Ikeda and MIG It has been known that the Polar Vortex has decadal variabilities, called Arctic Oscillation. Analyses of sea ice cover and cloud cover tell us that they have trends such as ice decay and cloud increase in addition to the decadal variabilities. The effect of clouds on air-sea heat flux is comparable with the positive ice-albedo feedback due to the ice decay. It is stressed that we should look at parameters more than sea ice cover in doubled CO2 experiments. A coupled ice-ocean model has been developed and is driven by variable Polar Vortex. The model successfully reproduces the sea ice variability: i.e., responding to the stronger Polar Vortex, sea ice decreases in the Siberian Shelves but increases on Canadian side. Using marine geochemistry data collected by ex-Soviet scientists, we try to relate the decadal variability with the atmospheric variability. The geochemistry field variability is consistent with Ekman pumping induced by Polar Vortex. These results will be useful for reconstructing the Arctic atmosphere-ice-ocean field at a climate variability scale.
-----
$BO"Mm@h(B