****************************************************************************************************************

$BBh(B 58 $B2s(B $BBg5$3$MN7wJ*M}7O%;%_%J!<(B $B$N$*$7$i$;(B

$BF|!!;~!'(B1999$BG/(B 1$B7n(B 14$BF|(B($B7n(B) $B8aA0(B 9:30 $B!A(B 12:00
$B>l!!=j!'(B$BDc292J3X8&5f=j(B 2F $BBg9V5A<<(B

$BH/I=$B@nEg@59T(B ($B6K0hBg5$3$MN3X9V:B!$=u $BBj!!L\!'(B$BCf0^EY$N%9%3!<%k%i%$%s$N<~4|E*JQF0$K4X$9$k?tCM

$BH/I=Hayley Shen (STA Fellowship Visiting Scientist;Permanent Affiliation: Clarkson University, Potsdam, NY, USA)
$BBj!!L\!'(BWave-Ice Interactions

****************************************************************************************************************

$BCf0^EY$N%9%3!<%k%i%$%s$N<~4|E*JQF0$K4X$9$k?tCM

  $B%9%3!<%k%i%$%s$d%l%$%s%P%s%I$J$I$N%a%=%9%1!<%kBPN.%7%9%F%`$N9_?e6/EY(B 
 $B$O!$$7$P$7$P?t;~4V!J(B2-5$B;~4V!KDxEY$N<~4|$GJQF0$9$k$3$H$,B?$/$N4QB,$K$h(B 
 $B$jJ,$+$C$F$$$k!%$^$?!$BPN.%7%9%F%`$K$h$j!$?t;~4V<~4|$N=ENOGH$,Ne5/$5$l(B 
 $B$k$3$H$bCN$i$l$F$$$k!%(B 
  
  $BHs@ENO3X#2eAX$K$O(BSL$B$K$h$kHsCGG.(B 
 $B2CG.$N6/$5$KBP1~$7$?!$$"$k?eJ?%9%1!<%k!J?tI4(Bkm$BDxEY!K$r$b$D9b5$05@-$N12(B 
 $B$,@8$8$k!%$3$N12$N6/$5$O$=$N?eJ?%9%1!<%k$KBP1~$7$?8GM-$N<~4|!J?t;~4VDx(B 
 $BEY!K$GJQF0$7!$Dj:_GH$r@8$8$k!%$3$NDj:_GH$KH<$&4D6->l$N<~4|E*JQ2=$KBP1~(B 
 $B$7!$(BSL$B$N9=B$$OC10l%;%k7?$H%^%k%A%;%k7?$N4V$GJQF0$9$k!%$3$l$K$h$j!$9_?e(B 
 $B$N<~4|E*JQF0!$$*$h$S?t;~4V<~4|$N=ENOGH!J@h$NDj:_GH$G$O$J$/!$EAGE$9$k$b(B 
 $B$N!K$,@8$8$k$H9M$($i$l$k!%$^$?!$(BSL$B$N9=B$$NJQ2=$KH<$$!$(BSL$B$K$h$k2CG.$N6/(B 
 $B$5$b<~4|E*$KJQF0$9$k$?$a!$BPN.$O@h$K=R$Y$?Dj:_GH$N?6I}$rA}2=$5$;$kF/$-(B 
 $B$r$b$D!%$$$o$PBPN.$H%a%=%9%1!<%k$N12$N6&LD$K$h$j!$<~4|E*JQF0$,5/$3$C$F(B 
 $B$$$k$H8@$($k!%(B 
  
  $B46EY$N8z2L$rBg$-$/$9$l$P9b5$05@-$N12$N%9%1!<%k$O>.$5$/$J$k$?$a!$BP(B 
 $BN.3hF0$N<~4|$bC;$/$J$k!%$^$?!$2.$5$/$9$k$H!$BPN.$N(B 
 $B7ABV$O%^%k%A%;%k7?$K8GDj$5$l!$L@NF$J<~4|@-$O8+$i$l$J$/$J$k!%(B 
  

Wave-Ice Interactions (Hayley Shen) $BH/I=MW;]!'(B

  Wave and sea ice interaction will be discussed under three topics: 
 Wave attenuation, Ice drift and thickening, and Formation process of 
 pancake ice. First, wave attenuation under an ice cover has been 
 identified to result from four distinct processes: bending, 
 scattering, eddy viscosity, and floe-floe collisions.  Study of the 
 fourth process is recent. This mechanism and its comparison with the 
 other known dissipation mechanisms will be given. Second, ice drift 
 under wave action from the scattering theory as well as from the 
 collision theory is shown to be comparable with wind drift, hence 
 should be included in mesoscale ice dynamic models. Also, wave can 
 cause rapid thickening of pancake ice covers. This mechanical 
 thickening may be responsible for sustainability of early ice covers. 
 Third, pancake ice formation under wave actions is discussed. Some 
 recent laboratory work and the resulting qualitative theory for this 
 formation process are given. 

-----
$BO"Mm@h(B

$B?eED(B $B85B@(B $B!wKL3$F;Bg3XBg3X1!CO5e4D6-2J3X8&5f2J(B
$BBg5$3$MN7w4D6-2J3X@l96Bg=[4DNO3X9V:B(B
mail-to:mizuta@ees.hokudai.ac.jp / Tel: 011-706-2359